IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/941238.html
   My bibliography  Save this article

Dynamic Congested Traffic States of Density Difference Lattice Hydrodynamic Model with On-Ramp

Author

Listed:
  • Jun-fang Tian
  • Zhen-zhou Yuan
  • Bin Jia
  • Wang Tao

Abstract

The density difference lattice hydrodynamic model with on-ramp is proposed. Stochastic and deterministic rules for the on-ramp flow entering into the main road are designed. Under the stochastic rule, various empirical spatiotemporal patterns can be well reproduced, such as the pinned localized cluster (PLC) and homogeneous synchronized traffic (HST). Under the deterministic rule, four new types of congested traffic states, such as the stationary oscillatory congested traffic (OCT) upstream of on-ramp and the stationary and localized OCT emerging in HST, are identified for the first time. Comparisons with the macroscopic speed gradient model are carried out, and some advantages of our model are clarified. To our knowledge, it is the first research showing that the lattice hydrodynamic model could reproduce various congested patterns induced by the on-ramp system.

Suggested Citation

  • Jun-fang Tian & Zhen-zhou Yuan & Bin Jia & Wang Tao, 2013. "Dynamic Congested Traffic States of Density Difference Lattice Hydrodynamic Model with On-Ramp," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, October.
  • Handle: RePEc:hin:jnddns:941238
    DOI: 10.1155/2013/941238
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2013/941238.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2013/941238.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/941238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Phase transition in a new heterogeneous macro continuum model of traffic flow under rain and snow weather environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Zhang, Yicai & Zhao, Min & Sun, Dihua & Liu, Xiaoyu & Huang, Shuai & Chen, Dong, 2022. "Robust H-infinity control for connected vehicles in lattice hydrodynamic model at highway tunnel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:941238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.