IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/8950732.html
   My bibliography  Save this article

A Data Mining-Based Model for Evaluating Tennis Players’ Training Movements

Author

Listed:
  • Hang Chen
  • Gengxin Sun

Abstract

This paper uses data mining technology to mathematically model the training movements of tennis players, establish a three-dimensional data information database of athletes utilizing depth imaging, analyze the data with data mining algorithms, and derive the results after comparative evaluation and analysis with a database of movement characteristics of tennis dribblers. This paper uses video observation and mathematical modeling to construct a tennis player training action evaluation model, which provides a reference basis for tennis players to improve and enhance their tactical level; it can also provide a reference for the development of sports training special theory of tennis projects and enrich the tactical diagnosis method of tennis matches. To improve the accuracy of 3D human pose estimation, this paper adopts a 3D skeleton point extraction method based on RGBD images; for the action alignment problem, this paper uses a dynamic time warping (DTW) algorithm; for the similarity measure, this paper gives a Pearson correlation coefficient method based on the joint point features of human parts. This paper aims to conduct a systematic theoretical analysis of tennis players’ training movements based on theories and methods such as system science theory and social network analysis. On this basis, the characteristics of tennis training technology development are analyzed from a combination of qualitative and quantitative perspectives, while the development of tennis player training is explored based on tracking observations of tennis player movement training, and finally, the attack and service characteristics of tennis training are analyzed to better provide some reference for the sustainable development of tennis.

Suggested Citation

  • Hang Chen & Gengxin Sun, 2022. "A Data Mining-Based Model for Evaluating Tennis Players’ Training Movements," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-11, February.
  • Handle: RePEc:hin:jnddns:8950732
    DOI: 10.1155/2022/8950732
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2022/8950732.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2022/8950732.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/8950732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:8950732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.