Author
Abstract
It is of great significance to identify influential rumor spreaders for preventing and controlling the rumor propagation. In this paper, on four real social networks, based on the classical rumor model and combining one-to-many modes of propagation, we investigate the rumor propagation by Monte Carlo simulations when the spreading rate is small. Firstly, we layer the network nodes according to network characteristics. If the assortative coefficient is positive, we layer the network nodes by the degree centrality and the nodes with large degree are in high layers. If the assortative coefficient is negative, we layer the network nodes by the K-Shell method and the nodes with large value are in high layers. Then the performance of nodes in different layers as origination of rumors and as informed nodes is investigated. We find that the propagation size is larger and the peak prevalence of the rumor is reached in a shorter time when the nodes in higher layers act as origination. Moreover, when the nodes in higher layer are not the origination of the rumor, they are more likely to be informed and they are informed more faster, and they terminate propagation faster. That is, their attendance is more beneficial to propagation size, peak prevalence, and the arrival time of peak prevalence. The conclusion can provide powerful theoretical support for controlling rumor propagation or enhancing information transmission.
Suggested Citation
Ruixia Zhang & Deyu Li, 2019.
"Identifying Influential Rumor Spreader in Social Network,"
Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-10, May.
Handle:
RePEc:hin:jnddns:8938195
DOI: 10.1155/2019/8938195
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:8938195. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.