IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/854089.html
   My bibliography  Save this article

Simulation-Based Sensor Location Model for Arterial Street

Author

Listed:
  • Qinxiao Yu
  • Ning Zhu
  • Geng Li
  • Shoufeng Ma

Abstract

Traffic sensors serve as an important way to a number of intelligent transportation system applications which rely heavily on real-time data. However, traffic sensors are costly. Therefore, it is necessary to optimize sensor placement to maximize various benefits. Arterial street traffic is highly dynamic and the movement of vehicles is disturbed by signals and irregular vehicle maneuver. It is challenging to estimate the arterial street travel time with limited sensors. In order to solve the problem, the paper presents travel time estimation models that rely on speed data collected by sensor. The relationship between sensor position and vehicle trajectory in single link is investigated. A sensor location model in signalized arterial is proposed to find the optimal sensor placement with the minimum estimation error of arterial travel time. Numerical experiments are conducted in 3 conditions: synchronized traffic signals, green wave traffic signals, and vehicle-actuated signals. The results indicate that the sensors should not be placed in vehicle queuing area. Intersection stop line is an ideal sensor position. There is not any fixed sensor position that can cope with all traffic conditions.

Suggested Citation

  • Qinxiao Yu & Ning Zhu & Geng Li & Shoufeng Ma, 2015. "Simulation-Based Sensor Location Model for Arterial Street," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-13, August.
  • Handle: RePEc:hin:jnddns:854089
    DOI: 10.1155/2015/854089
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/854089.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/854089.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/854089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:854089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.