IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/7345941.html
   My bibliography  Save this article

A Branch and Bound Algorithm for Agile Earth Observation Satellite Scheduling

Author

Listed:
  • Xiaogeng Chu
  • Yuning Chen
  • Lining Xing

Abstract

The agile earth observing satellite scheduling (AEOSS) problem consists of scheduling a subset of images among a set of candidates that satisfy imperative constraints and maximize a gain function. In this paper, we consider a new AEOSS model which integrates a time-dependent temporal constraint. To solve this problem, we propose a highly efficient branch and bound algorithm whose effective ingredients include a look-ahead construction method (for generating a high quality initial lower bound) and a combined use of three pruning strategies (which help to prune a large portion of the search space). We conducted computational experiments on a set of test data that were generated with information from real-life scenarios. The results showed that the proposed algorithm is efficient enough for engineering application. In particular, it is able to solve instances with 55 targets to optimality within 164 seconds on average. Furthermore, we carried out additional experiments to analyze the contribution of each key algorithm ingredient.

Suggested Citation

  • Xiaogeng Chu & Yuning Chen & Lining Xing, 2017. "A Branch and Bound Algorithm for Agile Earth Observation Satellite Scheduling," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-15, September.
  • Handle: RePEc:hin:jnddns:7345941
    DOI: 10.1155/2017/7345941
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/7345941.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/7345941.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/7345941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    2. Jie Chun & Wenyuan Yang & Xiaolu Liu & Guohua Wu & Lei He & Lining Xing, 2023. "Deep Reinforcement Learning for the Agile Earth Observation Satellite Scheduling Problem," Mathematics, MDPI, vol. 11(19), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:7345941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.