IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/720682.html
   My bibliography  Save this article

An SIRS Epidemic Model with Vital Dynamics and a Ratio-Dependent Saturation Incidence Rate

Author

Listed:
  • Xinli Wang

Abstract

This paper presents an investigation on the dynamics of an epidemic model with vital dynamics and a nonlinear incidence rate of saturated mass action as a function of the ratio of the number of the infectives to that of the susceptibles. The stabilities of the disease-free equilibrium and the endemic equilibrium are first studied. Under the assumption of nonexistence of periodic solution, the global dynamics of the model is established: either the number of infective individuals tends to zero as time evolves or it produces bistability in which there is a region such that the disease will persist if the initial position lies in the region and disappears if the initial position lies outside this region. Computer simulation shows such results.

Suggested Citation

  • Xinli Wang, 2015. "An SIRS Epidemic Model with Vital Dynamics and a Ratio-Dependent Saturation Incidence Rate," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-9, December.
  • Handle: RePEc:hin:jnddns:720682
    DOI: 10.1155/2015/720682
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/720682.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/720682.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/720682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raul Nistal & Manuel De la Sen & Santiago Alonso-Quesada & Asier Ibeas, 2018. "On a New Discrete SEIADR Model with Mixed Controls: Study of Its Properties," Mathematics, MDPI, vol. 7(1), pages 1-19, December.
    2. De la Sen, M. & Alonso-Quesada, S. & Ibeas, A. & Nistal, R., 2019. "On an SEIADR epidemic model with vaccination, treatment and dead-infectious corpses removal controls," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 47-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:720682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.