Author
Listed:
- A. M. Elaiw
- M. A. Alghamdi
- Shaban Aly
Abstract
Modeling, analysis, and control of hepatitis B virus (HBV) infection have attracted the interests of mathematicians during the recent years. Several mathematical models exist and adequately explain the HBV dynamics as well as the effect of antiviral drug therapies. However, none of these models can completely exhibit all that is observed clinically and account the full course of infection. Besides model inaccuracies that HBV dynamics models suffer from, some disturbances/uncertainties from different sources may arise in the modeling. In this paper, the HBV dynamics is described by a system of nonlinear ordinary differential equations. The disturbances or uncertainties are modeled in the HBV dynamics model as additive bounded disturbances. The model is incorporated with two types of drug therapies which are used to inhibit viral production and prevent new infections. The model can be considered as nonlinear control system with control input is defined to be dependent on the drug dose and drug efficiency. We developed treatment schedules for HBV infected patients by using multirate model predictive control (MPC). The MPC is applied to the stabilization of the uninfected steady state of the HBV dynamics model. The inherent robustness properties of the MPC against additive disturbances are also shown.
Suggested Citation
A. M. Elaiw & M. A. Alghamdi & Shaban Aly, 2013.
"Hepatitis B Virus Dynamics: Modeling, Analysis, and Optimal Treatment Scheduling,"
Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, April.
Handle:
RePEc:hin:jnddns:712829
DOI: 10.1155/2013/712829
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:712829. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.