IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5898697.html
   My bibliography  Save this article

Evaluation of Performance of Different Methods in Detecting Abrupt Climate Changes

Author

Listed:
  • Chunyu Zhao
  • Yan Cui
  • Xiaoyu Zhou
  • Ying Wang

Abstract

We compared and evaluated the performance of five methods for detecting abrupt climate changes using a time series with artificially generated abrupt characteristics. Next, we analyzed these methods using annual mean surface air temperature records from the Shenyang meteorological station. Our results show that the moving -test (MTT), Yamamoto (YAMA), and LePage (LP) methods can correctly and effectively detect abrupt changes in means, trends, and dynamic structure; however, they cannot detect changes in variability. We note that the sample size of the subseries used in these tests can affect their results. When the sample size of the subseries ranges from one-quarter to three-quarters of the jump scale, these methods can effectively detect abrupt changes; they perform best when the sample size is one-half of the jump scale. The Cramer method can detect abrupt changes in the mean and trend of a series but not changes in variability or dynamic structure. Finally, we found that the Mann-Kendall test could not detect any type of abrupt change. We found no difference in the results of any of the methods following removal of the mean, creation of an anomaly series, or normalization. However, detrending and study period selection affected the results of the Cramer and Mann-Kendall methods; in the latter case, they could lead to a completely different result.

Suggested Citation

  • Chunyu Zhao & Yan Cui & Xiaoyu Zhou & Ying Wang, 2016. "Evaluation of Performance of Different Methods in Detecting Abrupt Climate Changes," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-14, May.
  • Handle: RePEc:hin:jnddns:5898697
    DOI: 10.1155/2016/5898697
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2016/5898697.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2016/5898697.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/5898697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinying Fan & Bin Chen & Changfeng Fu & Lingyun Li, 2020. "Research on the Influence of Abrupt Climate Changes on the Analysis of Typical Meteorological Year in China," Energies, MDPI, vol. 13(24), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5898697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.