IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5577041.html
   My bibliography  Save this article

A Decomposition-Ensemble Approach with Denoising Strategy for PM2.5 Concentration Forecasting

Author

Listed:
  • Guangyuan Xing
  • Er-long Zhao
  • Chengyuan Zhang
  • Jing Wu
  • Giancarlo Consolo

Abstract

To enhance the forecasting accuracy for PM2.5 concentrations, a novel decomposition-ensemble approach with denoising strategy is proposed in this study. This novel approach is an improved approach under the effective “denoising, decomposition, and ensemble†framework, especially for nonlinear and nonstationary features of PM2.5 concentration data. In our proposed approach, wavelet denoising approach, as a noise elimination tool, is applied to remove the noise from the original data. Then, variational mode decomposition (VMD) is implemented to decompose the denoised data for producing the components. Next, kernel extreme learning machine (KELM) as a popular machine learning algorithm is employed to forecast all extracted components individually. Finally, these forecasted results are aggregated into an ensemble result as the final forecasting. With hourly PM2.5 concentration data in Xi’an as sample data, the empirical results demonstrate that our proposed hybrid approach significantly performs better than all benchmarks (including single forecasting techniques and similar approaches with other decomposition) in terms of the accuracy. Consequently, the robustness results also indicate that our proposed hybrid approach can be recommended as a promising forecasting tool for capturing and exploring the complicated time series data.

Suggested Citation

  • Guangyuan Xing & Er-long Zhao & Chengyuan Zhang & Jing Wu & Giancarlo Consolo, 2021. "A Decomposition-Ensemble Approach with Denoising Strategy for PM2.5 Concentration Forecasting," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-13, April.
  • Handle: RePEc:hin:jnddns:5577041
    DOI: 10.1155/2021/5577041
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2021/5577041.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2021/5577041.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5577041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue-Bo Jin & Zhong-Yao Wang & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2023. "Variational Bayesian Network with Information Interpretability Filtering for Air Quality Forecasting," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    2. Ali Asghar Heidari & Mehdi Akhoondzadeh & Huiling Chen, 2022. "A Wavelet PM2.5 Prediction System Using Optimized Kernel Extreme Learning with Boruta-XGBoost Feature Selection," Mathematics, MDPI, vol. 10(19), pages 1-35, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5577041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.