IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5375206.html
   My bibliography  Save this article

The Behavioral Mechanism and Forecasting of Beijing Housing Prices from a Multiscale Perspective

Author

Listed:
  • Yan Li
  • Zhaoyang Xiang
  • Tao Xiong

Abstract

The first-hand house price in Beijing, the capital of China, has skyrocketed with 43 percent annual growth from 2005 to 2017, exerting tremendous adverse effects on people’s livelihood and the development of real estate. Thus, exploring the behavioral mechanism and accurate forecasts of house prices is a critical element in making decisions under uncertain conditions and is of great practical significance for both participants and policymakers in real estate. According to the complex features of house price, including nonlinear, nonstationary, and multiscale, and considering the remarkable time and frequency discrimination capability of multiscale analysis in dealing with house price problems, we develop an ensemble empirical mode decomposition- (EEMD-) based multiscale analysis paradigm to investigate the behavioral mechanism and then obtain accurate forecasts of house prices. Specifically, the monthly house price in Beijing over the period January 2005 to November 2018 is first decomposed into several different time-scale intrinsic-mode functions (IMFs) and a residual via EEMD, revealing some interesting characteristics in house price volatility. Then, we compose the IMFs and residual into three components caused by normal market disequilibrium, extreme events, and the economic environment using the fine-to-coarse reconstruction algorithm. Finally, we propose an improved hybrid prediction model for forecasting house prices. Our experimental results show that the proposed multiscale analysis paradigm is able to clearly reveal the behavioral mechanism hidden in the original house price. More importantly, the mean absolute percentage errors (MAPEs) of the proposed EEMD-based hybrid approach are 5.62%, 7.24%, and 8.63% for one-, three-, and six-step-ahead prediction, respectively, consistently lower than the MAPE of the three competitors.

Suggested Citation

  • Yan Li & Zhaoyang Xiang & Tao Xiong, 2020. "The Behavioral Mechanism and Forecasting of Beijing Housing Prices from a Multiscale Perspective," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-13, March.
  • Handle: RePEc:hin:jnddns:5375206
    DOI: 10.1155/2020/5375206
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/5375206.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/5375206.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5375206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zengzheng Wang & Fuhao Zhang & Yangyang Zhao, 2023. "Exploring the Spatial Discrete Heterogeneity of Housing Prices in Beijing, China, Based on Regionally Geographically Weighted Regression Affected by Education," Land, MDPI, vol. 12(1), pages 1-24, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5375206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.