Author
Listed:
- Pang Ying Han
- Andrew Teoh Beng Jin
- Lim Heng Siong
Abstract
Graph-based subspace learning is a class of dimensionality reduction technique in face recognition. The technique reveals the local manifold structure of face data that hidden in the image space via a linear projection. However, the real world face data may be too complex to measure due to both external imaging noises and the intra-class variations of the face images. Hence, features which are extracted by the graph-based technique could be noisy. An appropriate weight should be imposed to the data features for better data discrimination. In this paper, a piecewise weighting function, known as Eigenvector Weighting Function (EWF), is proposed and implemented in two graph based subspace learning techniques, namely Locality Preserving Projection and Neighbourhood Preserving Embedding. Specifically, the computed projection subspace of the learning approach is decomposed into three partitions: a subspace due to intra-class variations, an intrinsic face subspace, and a subspace which is attributed to imaging noises. Projected data features are weighted differently in these subspaces to emphasize the intrinsic face subspace while penalizing the other two subspaces. Experiments on FERET and FRGC databases are conducted to show the promising performance of the proposed technique.
Suggested Citation
Pang Ying Han & Andrew Teoh Beng Jin & Lim Heng Siong, 2011.
"Eigenvector Weighting Function in Face Recognition,"
Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, March.
Handle:
RePEc:hin:jnddns:521935
DOI: 10.1155/2011/521935
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:521935. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.