IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5009209.html
   My bibliography  Save this article

Investigation on the Nonlinear Vibration Characteristics of Current-Carrying Crescent Iced Conductors under Aerodynamic Forces, Ampere’s Forces, and Forced Excitation Conditions

Author

Listed:
  • Xiaohui Liu
  • Haobo Liang
  • Guangyun Min
  • Chuan Wu
  • Mengqi Cai
  • Sundarapandian Vaidyanathan

Abstract

Aiming at the problem of nonlinear vibration of current-carrying iced conductors, the aerodynamic forces are introduced into the previous vibration equation of current-carrying conductors that only considered Ampere’s forces. At the same time, on this basis, a forced excitation load is further introduced to study the influence of dynamic wind on the nonlinear vibration characteristics of current-carrying iced conductors, and a new current-carrying iced conductors system under the combined action of Ampere’s forces, forced excitation, and aerodynamic forces has been established, and the improved theoretical modeling of current-carrying iced transmission lines made the model more in line with practical engineering. Firstly, the model of current-carrying iced conductors was established, and then the vibration equation of the model was derived. And the vibration equation was transformed into a finite dimensional ordinary differential equation by using the Galerkin method. The amplitude-frequency response functions of the nonlinear forced primary resonances and super-harmonic and subharmonic resonances of the system are derived by using the multiscale method. Through numerical calculation, the influence of current-carrying, spacing, wind velocity, tension, and excitation amplitude on the response amplitude when the primary resonance of the system appears is analyzed, and the difference between the two working conditions (considering the aerodynamic forces and without considering aerodynamic forces) is compared. The influence of the variation of current-carrying i on the response amplitude of super-harmonic and subharmonic resonances and the stability of the steady-state solution of forced primary resonance was analyzed. The results show that the response amplitude and the nonlinearilty of system under the action of aerodynamic forces are smaller and weaker than without the action of aerodynamic forces; the variation of line parameters has a certain influence on the response amplitude of conductor and the nonlinearity of system; the response amplitudes of the primary resonance, super-harmonic resonance, and subharmonic resonance increase with the increase in the excitation amplitudes, and the resonance peak is offset towards the negative value of the tuning parameter σ, showing the characteristics of soft spring, and the response amplitudes are accompanied by complex nonlinear dynamic behaviors such as the multivalue and jump phenomenon. The change of current-carrying i has an obvious effect on the nonlinearity of the system. The nonlinear and response amplitudes of the system are also enhanced with the increase in wind velocity. The stability of the system is judged when the primary resonance occurs, and it is found that the response amplitude shows synchronization and the out-of-step phenomenon with the change of tuning parameters. The research results obtained in this paper would help to further improve the theoretical modeling about current-carrying iced lines, and the research of line parameters can give a certain reference value to practical engineering, and it will have a positive effect on the safe operation of high-voltage transmission lines.

Suggested Citation

  • Xiaohui Liu & Haobo Liang & Guangyun Min & Chuan Wu & Mengqi Cai & Sundarapandian Vaidyanathan, 2021. "Investigation on the Nonlinear Vibration Characteristics of Current-Carrying Crescent Iced Conductors under Aerodynamic Forces, Ampere’s Forces, and Forced Excitation Conditions," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-22, October.
  • Handle: RePEc:hin:jnddns:5009209
    DOI: 10.1155/2021/5009209
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2021/5009209.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2021/5009209.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5009209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5009209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.