IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/4373871.html
   My bibliography  Save this article

Assigning Passenger Flows on a Metro Network Based on Automatic Fare Collection Data and Timetable

Author

Listed:
  • Ling Hong
  • Wei Li
  • Wei Zhu

Abstract

Assigning passenger flows on a metro network plays an important role in passenger flow analysis that is the foundation of metro operation. Traditional transit assignment models are becoming increasingly complex and inefficient. These models may even not be valid in case of sudden changes in the timetable or disruptions in the metro system. We propose a methodology for assigning passenger flows on a metro network based on automatic fare collection (AFC) data and realized timetable. We find that the routes connecting a given origin and destination (O-D) pair are related to their observed travel times (OTTs) especially their pure travel times (PTTs) abstracted from AFC data combined with the realized timetable. A novel clustering algorithm is used to cluster trips between a given O-D pair based on PTTs/OTTs and complete the assignment. An initial application to categorical O-D pairs on the Shanghai metro system, which is one of the largest systems in the world, shows that the proposed methodology works well. Accompanying the initial application, an interesting approach is also provided for determining the theoretical maximum accuracy of the new assignment model.

Suggested Citation

  • Ling Hong & Wei Li & Wei Zhu, 2017. "Assigning Passenger Flows on a Metro Network Based on Automatic Fare Collection Data and Timetable," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-10, May.
  • Handle: RePEc:hin:jnddns:4373871
    DOI: 10.1155/2017/4373871
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/4373871.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/4373871.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4373871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Yu & Hua Bai & Jun Chen & Xingchen Yan, 2019. "Analysis of Space-Time Variation of Passenger Flow and Commuting Characteristics of Residents Using Smart Card Data of Nanjing Metro," Sustainability, MDPI, vol. 11(18), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:4373871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.