IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/365204.html
   My bibliography  Save this article

Functional Principal Components Analysis of Shanghai Stock Exchange 50 Index

Author

Listed:
  • Zhiliang Wang
  • Yalin Sun
  • Peng Li

Abstract

The main purpose of this paper is to explore the principle components of Shanghai stock exchange 50 index by means of functional principal component analysis (FPCA). Functional data analysis (FDA) deals with random variables (or process) with realizations in the smooth functional space. One of the most popular FDA techniques is functional principal component analysis, which was introduced for the statistical analysis of a set of financial time series from an explorative point of view. FPCA is the functional analogue of the well-known dimension reduction technique in the multivariate statistical analysis, searching for linear transformations of the random vector with the maximal variance. In this paper, we studied the monthly return volatility of Shanghai stock exchange 50 index (SSE50). Using FPCA to reduce dimension to a finite level, we extracted the most significant components of the data and some relevant statistical features of such related datasets. The calculated results show that regarding the samples as random functions is rational. Compared with the ordinary principle component analysis, FPCA can solve the problem of different dimensions in the samples. And FPCA is a convenient approach to extract the main variance factors.

Suggested Citation

  • Zhiliang Wang & Yalin Sun & Peng Li, 2014. "Functional Principal Components Analysis of Shanghai Stock Exchange 50 Index," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-7, July.
  • Handle: RePEc:hin:jnddns:365204
    DOI: 10.1155/2014/365204
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/365204.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/365204.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/365204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Hengzhen & Zhu, Xiaoyu & Wang, Jianli & Yick, Ho Yin, 2021. "Share pledge transactions as an investor sentiment indicator - Evidence from China," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 230-238.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:365204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.