Author
Listed:
- A. Xiaochang Li
- B. Jichen Chen
- C. Zhengjun Zhai
- D. Mingchen Feng
- E. Xin Ye
- Wei Wang
Abstract
In NAND flash storage devices, the random access memory (RAM) is composed of a data buffer and mapping cache that play critical roles in storage performance. Furthermore, as the capacity growth rate of RAM chips lags far behind that of flash memory chips, determining how to take advantage of precious RAM is still a crucial issue. However, most existing buffer management studies on storage devices report performance degradation since these devices cannot refine reference regularities such as sequential, hot, or looping data patterns. In addition, most of these studies focus only on separately managing the data buffer or mapping cache. Compared with the existing buffer/cache management schemes (BMSs), we propose a unified RAM management (URM) scheme for not only the mapping cache but also the data buffer in NAND flash storage devices. URM compresses the mapping table to save memory space, and the remaining dynamic RAM space is used for the data buffer. For the data buffer part, we utilize the program counter-technique in the host layer that provides automatic pattern recognition for different applications, in contrast to existing BMSs. The program counter-technique in our design is able to distinguish four patterns. According to these patterns, the data buffer is divided into four size-adjustable zones. Therefore, our approach is linked to multimodal data and used in a data-intensive system. In particular, in URM, we use a multivariate classification to predict prefetching length in mapping buffer management. Our multivariate classification is transformed into multiple binary classifications (logistic regressions). Finally, we extensively evaluate URM using various realistic workloads, and the experimental results show that, compared with three data buffer management schemes, CFLRU, BPLRU, and VBBMS, URM can improve the hit ratio of data buffer and save response time by an average to 32% and 18%, respectively.
Suggested Citation
A. Xiaochang Li & B. Jichen Chen & C. Zhengjun Zhai & D. Mingchen Feng & E. Xin Ye & Wei Wang, 2022.
"URM: A Unified RAM Management Scheme for NAND Flash Storage Devices,"
Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-11, May.
Handle:
RePEc:hin:jnddns:3376904
DOI: 10.1155/2022/3376904
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:3376904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.