IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/2379381.html
   My bibliography  Save this article

Electricity Demand Projection Using a Path-Coefficient Analysis and BAG-SA Approach: A Case Study of China

Author

Listed:
  • Qunli Wu
  • Chenyang Peng

Abstract

Path-coefficient analysis is utilized to investigate the direct and indirect effects of economic growth, population growth, urbanization rate, industrialization level, and carbon intensity on electricity demand of China. To improve the projection accuracy of electricity demand, this study proposes a hybrid bat algorithm, Gaussian perturbations, and simulated annealing (BAG-SA) optimization method. The proposed BAG-SA algorithm not only inherits the simplicity and efficiency of the standard BA with a capability of searching for global optimality but also enhances local search ability and speeds up the global convergence rate. The BAG-SA algorithm is employed to optimize the coefficients of the multiple linear and quadratic forms of electricity demand estimation model. Results indicate that the proposed algorithm has higher precision and reliability than the coefficients optimized by other single-optimization methods, such as genetic algorithm, particle swarm optimization algorithm, or bat algorithm. And the quadratic form of BAG-SA electricity demand estimation model has better fitting ability compared with the multiple linear form of the model. Therefore, the quadratic form of the model is applied to estimate electricity demand of China from 2016 to 2030. The findings of this study demonstrate that China’s electricity demand will reach 14925200 million KWh in 2030.

Suggested Citation

  • Qunli Wu & Chenyang Peng, 2017. "Electricity Demand Projection Using a Path-Coefficient Analysis and BAG-SA Approach: A Case Study of China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-9, April.
  • Handle: RePEc:hin:jnddns:2379381
    DOI: 10.1155/2017/2379381
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/2379381.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/2379381.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/2379381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:2379381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.