IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/2106910.html
   My bibliography  Save this article

Dynamical Analysis of Secondary Dengue Viral Infection with Multiple Target Cells and Diffusion by Mathematical Model

Author

Listed:
  • Aeshah A. Raezah
  • A. E. Matouk

Abstract

Dengue is an epidemic disease rapidly spreading throughout many parts of the world, which is a serious public health concern. Understanding disease mechanisms through mathematical modeling is one of the most effective tools for this purpose. The aim of this manuscript is to develop and analyze a dynamical system of PDEs that describes the secondary infection caused by DENV, considering (i) the diffusion due to spatial mobility of cells and DENV particles, (ii) the interactions between multiple target cells, DENV, and antibodies of two types (heterologous and homologous). Global existence, positivity, and boundedness are proved for the system with homogeneous Neumann boundary conditions. Three threshold parameters are computed to characterize the existence and stability conditions of the model’s four steady states. Via means of Lyapunov functional, the global stability of all steady states is carried out. Our results show that the uninfected steady state is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the disappearance of the disease from the body. When the basic reproduction number is greater than unity, the disease persists in the body with an active or inactive immune antibody response. To demonstrate such theoretical results, numerical simulations are presented.

Suggested Citation

  • Aeshah A. Raezah & A. E. Matouk, 2022. "Dynamical Analysis of Secondary Dengue Viral Infection with Multiple Target Cells and Diffusion by Mathematical Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-24, November.
  • Handle: RePEc:hin:jnddns:2106910
    DOI: 10.1155/2022/2106910
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2022/2106910.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2022/2106910.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/2106910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Aeshah A. Raezah & Matuka A. Alshaikh, 2023. "Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:2106910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.