IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/185919.html
   My bibliography  Save this article

Detection of the onset of numerical chaotic instabilities by lyapunov exponents

Author

Listed:
  • Alicia Serfaty De Markus

Abstract

It is commonly found in the fixed-step numerical integration of nonlinear differential equations that the size of the integration step is opposite related to the numerical stability of the scheme and to the speed of computation. We present a procedure that establishes a criterion to select the largest possible step size before the onset of chaotic numerical instabilities, based upon the observation that computational chaos does not occur in a smooth, continuous way, but rather abruptly, as detected by examining the largest Lyapunov exponent as a function of the step size. For completeness, examination of the bifurcation diagrams with the step reveals the complexity imposed by the algorithmic discretization, showing the robustness of a scheme to numerical instabilities, illustrated here for explicit and implicit Euler schemes. An example of numerical suppression of chaos is also provided.

Suggested Citation

  • Alicia Serfaty De Markus, 2001. "Detection of the onset of numerical chaotic instabilities by lyapunov exponents," Discrete Dynamics in Nature and Society, Hindawi, vol. 6, pages 1-8, January.
  • Handle: RePEc:hin:jnddns:185919
    DOI: 10.1155/S1026022601000127
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/6/185919.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/6/185919.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S1026022601000127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peixoto, Márcia L.C. & Nepomuceno, Erivelton G. & Martins, Samir A.M. & Lacerda, Márcio J., 2018. "Computation of the largest positive Lyapunov exponent using rounding mode and recursive least square algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 36-43.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:185919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.