IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/9994977.html
   My bibliography  Save this article

Graphical Structures of Cubic Intuitionistic Fuzzy Information

Author

Listed:
  • Sami Ullah Khan
  • Naeem Jan
  • Kifayat Ullah
  • Lazim Abdullah
  • Basil Papadopoulos

Abstract

The theory developed in this article is based on graphs of cubic intuitionistic fuzzy sets (CIFS) called cubic intuitionistic fuzzy graphs (CIFGs). This graph generalizes the structures of fuzzy graph (FG), intuitionistic fuzzy graph (IFG), and interval-valued fuzzy graph (IVFG). Moreover, several associated concepts are established for CIFG, such as the idea subgraphs, degree of CIFG, order of CIFG, complement of CIFG, path in CIFG, strong CIFG, and the concept of bridges for CIFGs. Furthermore, the generalization of CIFG is proved with the help of some remarks. In addition, the comparison among the existing and the proposed ideas is carried out. Finally, an application of CIFG in decision-making problem is studied, and some future study is proposed.

Suggested Citation

  • Sami Ullah Khan & Naeem Jan & Kifayat Ullah & Lazim Abdullah & Basil Papadopoulos, 2021. "Graphical Structures of Cubic Intuitionistic Fuzzy Information," Journal of Mathematics, Hindawi, vol. 2021, pages 1-21, May.
  • Handle: RePEc:hin:jjmath:9994977
    DOI: 10.1155/2021/9994977
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/9994977.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/9994977.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9994977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:9994977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.