Author
Listed:
- Firaol Asfaw Wodajo
- Temesgen Tibebu Mekonnen
- Kolade M. Owolabi
Abstract
Hepatitis B is a globally infectious disease. It is pretty contagious and can be transmitted by blood or bodily fluids, through things like sharing razors and toothbrushes. It has been called the silent killer because it is asymptomatic, one might have the virus but not know until it manifests itself until much later. Since people do not give attention, it will develop into cirrhosis and hepatocellular carcinoma that leads to liver transplantation and death. This nature of HBV disease motivated us to perform this work. Mathematical modeling of HBV transmission is an interesting research area. In this paper, we present characteristics of HBV virus transmission in the form of a mathematical model. We proposed and analyzed a compartmental nonlinear deterministic mathematical model SEACTR for transmission dynamics and control of hepatitis B virus disease. In this model, we used force infection which takes the contact rate of susceptible population and transmission probability into account. We proved that the solution of the considered dynamical system is positive and bounded. The model is studied qualitatively using the stability theory of differential equations and the effective reproductive number which represents the epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. The sensitivity index shows that the transfer rate from exposed class to acute infective class and transfer rate from exposed class to chronic infective class are the most dominant parameters contributing to the transmission of HBV. On the one hand, the vaccination rate and treatment rate are the parameters that suppress the transmission of the disease the most, and enhancing the vaccination rate for newborns and treatment for chronically infected individuals is very effective to stop the transmission of HBV. The combined efforts of vaccination, effective treatment, and interruption of transmission make elimination of the infection plausible and may eventually lead to the eradication of the virus.
Suggested Citation
Firaol Asfaw Wodajo & Temesgen Tibebu Mekonnen & Kolade M. Owolabi, 2022.
"Effect of Intervention of Vaccination and Treatment on the Transmission Dynamics of HBV Disease: A Mathematical Model Analysis,"
Journal of Mathematics, Hindawi, vol. 2022, pages 1-17, January.
Handle:
RePEc:hin:jjmath:9968832
DOI: 10.1155/2022/9968832
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:9968832. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.