IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/9936968.html
   My bibliography  Save this article

Prediction of High-Tech Talents Flow Impact on Labor Income Share: Based on DEA and Fractional Hausdorff Grey Model

Author

Listed:
  • Wei Cui
  • Anwei Wan
  • Yongbo Yang
  • Lifeng Wu

Abstract

The purpose of this paper is to analyze the impact of high-tech talents flow on labor income share and explore the influencing mechanism. It can be proved that high-tech talents flow affects labor income share by production function, with technological progress as a mediator variable. The labor income share is the dependent variable, and the gravity of high-tech talents as the independent variable is the index to measure the high-tech talents flow, constructing the panel data model with the Malmquist index of technological progress as a mediator variable. Furthermore, the Malmquist index of technological progress is decomposed into catching-up of technological progress index and leapfrogging of technological progress index, which, respectively, replaces the Malmquist index of technological progress as a mediator variable in the panel data model. Regression analysis shows that technological progress is a mediator variable for high-tech talents flow to reduce labor income share, and the impact mainly comes from leapfrogging of technological progress. However, although the mediating effect of catching-up technological progress index is not significant at the significance level of 10%, it is a mediator variable for high-tech labor mobility to increase income share at the significance level of 20%. Finally, this paper predicts the change in labor income share from 2018 to 2027 by the fractional Hausdorff grey model, and the results show that it is an increasing trend. However, the Gini coefficient whose change trend is opposite to the labor income share remains high in the past two years, indicating that there are other factors affecting the income gap, such as the urbanization rate and the transportation convenience. The innovation of this paper is mainly to reveal that the leapfrogging of technological progress is the major cause of the high-tech talents flow rising income inequality gap, while the catching-up of technological progress is the source of the former narrowing the latter. The fractional Hausdorff grey model predicts that the key determinants of income inequality gap are more than labor income share.

Suggested Citation

  • Wei Cui & Anwei Wan & Yongbo Yang & Lifeng Wu, 2021. "Prediction of High-Tech Talents Flow Impact on Labor Income Share: Based on DEA and Fractional Hausdorff Grey Model," Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, April.
  • Handle: RePEc:hin:jjmath:9936968
    DOI: 10.1155/2021/9936968
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/9936968.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/9936968.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9936968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:9936968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.