IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/9152989.html
   My bibliography  Save this article

Location-Routing Problem of Emergency Facilities under Uncertain Demand by Branch-Price and Cut

Author

Listed:
  • Xuchen Deng
  • Nan-Jing Huang

Abstract

This paper studies the location-routing problem of emergency facilities with time window under demand uncertainty. We propose a robust mathematical model in which uncertain requirements are represented by two forms: the support set defined by cardinal constraint set. When the demand value of rescue point changes in a given definition set, the model can ensure the feasibility of each line. We propose a branch and price cutting algorithm, whose pricing problem is a robust resource-constrained shortest path problem. In addition, we take the Wenchuan Earthquake as an example to verify the practicability of the method. The robust model is simulated under different uncertainty levels and distributions and compared with the scheme obtained by the deterministic problem. The results show that the robust model can run successfully and maintain its robustness, and the robust model provides better protection against demand uncertainty. In addition, we find that cost is more sensitive to uncertainty level than protection level, and our proposed model also allows controlling the robustness level of the solution by adjusting the protection level. In all experiments, the cost of robustness is that the routing cost increases by an average of 13.87%.

Suggested Citation

  • Xuchen Deng & Nan-Jing Huang, 2021. "Location-Routing Problem of Emergency Facilities under Uncertain Demand by Branch-Price and Cut," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, December.
  • Handle: RePEc:hin:jjmath:9152989
    DOI: 10.1155/2021/9152989
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/9152989.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/9152989.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9152989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Xu & Mengfan Yan & Lun Wang & Shaojian Qu, 2022. "The Robust Emergency Medical Facilities Location-Allocation Models under Uncertain Environment: A Hybrid Approach," Sustainability, MDPI, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:9152989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.