IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/8829140.html
   My bibliography  Save this article

On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h-Convex Functions

Author

Listed:
  • Xiaobin Wang
  • Muhammad Shoaib Saleem
  • Kiran Naseem Aslam
  • Xingxing Wu
  • Tong Zhou
  • Sunil Kumar

Abstract

The theory of convex functions plays an important role in engineering and applied mathematics. The Caputo–Fabrizio fractional derivatives are one of the important notions of fractional calculus. The aim of this paper is to present some properties of Caputo–Fabrizio fractional integral operator in the setting of h-convex function. We present some new Caputo–Fabrizio fractional estimates from Hermite–Hadamard-type inequalities. The results of this paper can be considered as the generalization and extension of many existing results of inequalities and convex functions. Moreover, we also present some application of our results to special means of real numbers.

Suggested Citation

  • Xiaobin Wang & Muhammad Shoaib Saleem & Kiran Naseem Aslam & Xingxing Wu & Tong Zhou & Sunil Kumar, 2020. "On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h-Convex Functions," Journal of Mathematics, Hindawi, vol. 2020, pages 1-17, December.
  • Handle: RePEc:hin:jjmath:8829140
    DOI: 10.1155/2020/8829140
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2020/8829140.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2020/8829140.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8829140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moin-ud-Din Junjua & Ather Qayyum & Arslan Munir & Hüseyin Budak & Muhammad Mohsen Saleem & Siti Suzlin Supadi, 2024. "A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications," Mathematics, MDPI, vol. 12(3), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:8829140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.