Author
Listed:
- Dolat Khan
- Kanayo Kenneth Asogwa
- Talal Alqahtani
- Salem Algarni
- Sultan Alqahtani
- M. Ali Akbar
- Qingkai Zhao
Abstract
In blood flow and fluid mechanics, Jeffrey fluid has a vital role because of its viscoelastic characteristics. The application of Caputo–Fabrizio time-fractional derivatives for dusty-type Jeffrey fluid is discussed in this article. The concept of free convection flow of dusty Jeffrey fluid between infinite vertical parallel static plates is generalized. Free convection and buoyant force produce the flow. Furthermore, the fluid contains homogeneous dispersion of all spherical dust particles. Heat transmission is therefore taken into account for free convection. Nondimensional variables are used to write the dusty Jeffrey fluid classical model in dimensionless form. Also, the dimensionless model is transformed into a generalized dusty Jeffrey fluid model via a fractional derivative. Using the finite sine and Laplace method, the governing equations of the generalized dusty Jeffrey fluid model have been solved exactly. Numerical computation is used to study the physics of velocity and temperature profiles for a variety of embedded parameters. The collected results are discussed in detail and are shown graphically in this report. Mathcad-15 is used to plot the graphical outcomes for Jeffrey fluid, dust particle, and temperature profiles. Furthermore, skin friction and the Nusselt number are calculated. Table demonstrates how the rate of heat transmission reduces as the Peclet number’s value rises. Similarly, Table demonstrates that skin friction increases as the fractional parameter rises. By increasing the dusty Jeffrey fluid parameter λ, both velocity profiles are retarded.
Suggested Citation
Dolat Khan & Kanayo Kenneth Asogwa & Talal Alqahtani & Salem Algarni & Sultan Alqahtani & M. Ali Akbar & Qingkai Zhao, 2022.
"A Generalized Two-Phase Free Convection Flow of Dusty Jeffrey Fluid between Infinite Vertical Parallel Plates with Heat Transfer,"
Journal of Mathematics, Hindawi, vol. 2022, pages 1-13, November.
Handle:
RePEc:hin:jjmath:8470139
DOI: 10.1155/2022/8470139
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:8470139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.