IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/8086789.html
   My bibliography  Save this article

Recursive Neural Network-Based Market Demand Forecasting Algorithm for Calligraphy Practice Products

Author

Listed:
  • Yi Xue
  • Naeem Jan

Abstract

In today’s society, calligraphy, which reflects one’s basic writing skills, is becoming more and more important to people. People are influenced by calligraphy in their studies, work, etc. Improving calligraphy writing skills has become one of the key directions for developing one’s abilities at this stage. As an important means of improving writing skills, calligraphy practice products are attracting more and more attention and purchases. In particular, in recent years, as the market economy has developed in a deeper direction, people’s demand for calligraphy practice products has diversified and calligraphy practice product companies have launched a variety of products to meet the public’s calligraphy practice needs in order to adapt to the reality of consumer demand. However, with the development of the Internet culture industry and influenced by objective factors such as school holidays and seasons, the current market demand for calligraphy practice products is rapidly and dynamically changing, making market changes difficult to grasp and leading to poor sales, which directly affects the profits of calligraphy practice product-related companies. The artificial intelligence neural network method realizes the nonlinear relationship between the input and output of sample data through the self-learning ability of each neuron and has a certain nonlinear mapping ability in prediction, which plays a great role in the market demand prediction of many commercial products. Based on this, this paper proposes a recursive neural network-based algorithm to predict the future demand and development trend of calligraphy practice products through extensive and in-depth research, so as to provide positive and beneficial guidance for enterprises’ future production and sales.

Suggested Citation

  • Yi Xue & Naeem Jan, 2022. "Recursive Neural Network-Based Market Demand Forecasting Algorithm for Calligraphy Practice Products," Journal of Mathematics, Hindawi, vol. 2022, pages 1-10, January.
  • Handle: RePEc:hin:jjmath:8086789
    DOI: 10.1155/2022/8086789
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2022/8086789.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2022/8086789.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/8086789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:8086789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.