IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/6695585.html
   My bibliography  Save this article

Reachable Set Estimation for Uncertain Markovian Jump Systems with Time-Varying Delay and Disturbances

Author

Listed:
  • Shouwei Zhou
  • Jiangliu Gu
  • Changchun Shen
  • Min Jiang
  • Efthymios G. Tsionas

Abstract

In this paper, we are concerned with the problem of reachable set estimation for uncertain Markovian jump systems with time-varying delays and disturbances. The main consideration is to find a proper method to obtain the no-ellipsoidal bound of the reachable set of Markovian jump system as small as possible. Based on an augmented Lyapunov–Krasovskii functional, by dividing the time-varying delay into two nonuniform subintervals, more general delay-dependent stability criteria for the existence of a desired ellipsoid are derived. An optimized integral inequality which is based on distinguished Wirtinger integral inequality and reciprocally convex combination inequality is used to deal with the integral terms. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results.

Suggested Citation

  • Shouwei Zhou & Jiangliu Gu & Changchun Shen & Min Jiang & Efthymios G. Tsionas, 2021. "Reachable Set Estimation for Uncertain Markovian Jump Systems with Time-Varying Delay and Disturbances," Journal of Mathematics, Hindawi, vol. 2021, pages 1-30, February.
  • Handle: RePEc:hin:jjmath:6695585
    DOI: 10.1155/2021/6695585
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/6695585.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/6695585.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6695585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:6695585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.