IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/6665599.html
   My bibliography  Save this article

Composite Learning Sliding Mode Control of Nonlinear Systems Subject to Actuator Failures

Author

Listed:
  • Xianmin Hou
  • Songyu Wang
  • Heng Liu

Abstract

This article focuses on controlling single-input-single-output (SISO) nonlinear systems with actuator failures via sliding mode control (SMC) and composite learning SMC (CLSMC). In the design of the SMC, an integer-order sliding surface is proposed, and an adaptive law is constructed to update the parameter evaluation in the actuator failure. The SMC method can achieve the tracking error approaching zero if a strict permanent excitation (PE) condition is satisfied. To mitigate this requirement, by using all data recorded while the controller works, we construct prediction errors that are utilized to produce a composite learning adaptive law. Then, the proposed CLSMC method not only drives the tracking error to zero but also realizes the accurate evaluation of the unmatched unknown parameter in the actuator failure. In addition, in the proposed CLSMC method, we only need to satisfy an interval excitation (IE) condition. Simulation results are presented to indicate the validity of our methods.

Suggested Citation

  • Xianmin Hou & Songyu Wang & Heng Liu, 2020. "Composite Learning Sliding Mode Control of Nonlinear Systems Subject to Actuator Failures," Journal of Mathematics, Hindawi, vol. 2020, pages 1-7, December.
  • Handle: RePEc:hin:jjmath:6665599
    DOI: 10.1155/2020/6665599
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2020/6665599.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2020/6665599.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6665599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:6665599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.