Author
Listed:
- Rana Muhammad Zulqarnain
- Xiao Long Xin
- Muhammad Saqlain
- Waseem Asghar Khan
- Feng Feng
Abstract
The correlation coefficient between the two parameters plays a significant part in statistics. Furthermore, the exactness of the assessment of correlation depends upon information from the set of discourses. The data collected for various statistical studies are full of ambiguities. The idea of interval-valued intuitionistic fuzzy soft sets is an extension of intuitionistic fuzzy soft sets that is used to express insufficient evaluation, uncertainty, and anxiety in decision-making. Intuitionistic fuzzy soft sets consider two different types of information, such as membership degree and nonmembership degree. In this paper, the concepts and properties of the correlation coefficient and the weighted correlation coefficient of interval-valued intuitionistic fuzzy soft sets are proposed. A prioritization technique for order preference by similarity to the ideal solution based on interval-valued intuitionistic fuzzy soft sets of correlation coefficients and the weighted correlation coefficient is introduced. We also proposed interval-valued intuitionistic fuzzy soft weighted average and interval-valued intuitionistic fuzzy soft weighted geometric operators and developed decision-making techniques based on the proposed operators. By using the developed techniques, a method for solving decision-making problems is proposed. To ensure the applicability of the proposed methods, an illustrative example is given. Finally, we present a comparison of some existing methods with our proposed techniques.
Suggested Citation
Rana Muhammad Zulqarnain & Xiao Long Xin & Muhammad Saqlain & Waseem Asghar Khan & Feng Feng, 2021.
"TOPSIS Method Based on the Correlation Coefficient of Interval-Valued Intuitionistic Fuzzy Soft Sets and Aggregation Operators with Their Application in Decision-Making,"
Journal of Mathematics, Hindawi, vol. 2021, pages 1-16, January.
Handle:
RePEc:hin:jjmath:6656858
DOI: 10.1155/2021/6656858
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:6656858. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.