IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/657690.html
   My bibliography  Save this article

Noninvariant Hypersurfaces of a Nearly Trans-Sasakian Manifolds

Author

Listed:
  • Satya Prakash Yadav
  • Shyam Kishor

Abstract

The present paper focuses on the study of noninvariant hypersurfaces of a nearly trans-Sasakian manifold equipped with -structure. Initially some properties of this structure have been discussed. Further, the second fundamental forms of noninvariant hypersurfaces of nearly trans-Sasakian manifolds and nearly cosymplectic manifolds with -structure have been calculated provided is parallel. In addition, the eigenvalues of have been found and proved that a noninvariant hypersurface with -structure of nearly cosymplectic manifold with contact structure becomes totally geodesic. Finally the paper has been concluded by investigating the necessary condition for totally geodesic or totally umbilical noninvariant hypersurface with -structure of a nearly trans-Sasakian manifold.

Suggested Citation

  • Satya Prakash Yadav & Shyam Kishor, 2014. "Noninvariant Hypersurfaces of a Nearly Trans-Sasakian Manifolds," Journal of Mathematics, Hindawi, vol. 2014, pages 1-5, December.
  • Handle: RePEc:hin:jjmath:657690
    DOI: 10.1155/2014/657690
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JMATH/2014/657690.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JMATH/2014/657690.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/657690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:657690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.