IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/5585175.html
   My bibliography  Save this article

Global Dynamics of Secondary DENV Infection with Diffusion

Author

Listed:
  • A. M. Elaiw
  • A. S. Alofi
  • Nan-Jing Huang

Abstract

During the past eras, many mathematicians have paid their attentions to model the dynamics of dengue virus (DENV) infection but without taking into account the mobility of the cells and DENV particles. In this study, we develop and investigate a partial differential equations (PDEs) model that describes the dynamics of secondary DENV infection taking into account the spatial mobility of DENV particles and cells. The model includes five nonlinear PDEs describing the interaction among the target cells, DENV-infected cells, DENV particles, heterologous antibodies, and homologous antibodies. In the beginning, the well-posedness of solutions, including the existence of global solutions and the boundedness, is justified. We derive three threshold parameters which govern the existence and stability of the four equilibria of the model. We study the global stability of all equilibria based on the construction of suitable Lyapunov functions and usage of Lyapunov–LaSalle’s invariance principle (LLIP). Last, numerical simulations are carried out in order to verify the validity of our theoretical results.

Suggested Citation

  • A. M. Elaiw & A. S. Alofi & Nan-Jing Huang, 2021. "Global Dynamics of Secondary DENV Infection with Diffusion," Journal of Mathematics, Hindawi, vol. 2021, pages 1-17, June.
  • Handle: RePEc:hin:jjmath:5585175
    DOI: 10.1155/2021/5585175
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/5585175.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/5585175.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5585175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Aeshah A. Raezah & Matuka A. Alshaikh, 2023. "Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:5585175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.