IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/5544559.html
   My bibliography  Save this article

Bounds on Co-Independent Liar’s Domination in Graphs

Author

Listed:
  • K. Suriya Prabha
  • S. Amutha
  • N. Anbazhagan
  • Ismail Naci Cangul
  • Ghulam Shabbir

Abstract

A set S⊆V of a graph G=V,E is called a co-independent liar’s dominating set of G if (i) for all v∈V, NGv∩S≥2, (ii) for every pair u,v∈V of distinct vertices, NGu∪NGv∩S≥3, and (iii) the induced subgraph of G on V−S has no edge. The minimum cardinality of vertices in such a set is called the co-independent liar’s domination number of G, and it is denoted by γcoiLRG. In this paper, we introduce the concept of co-independent liar’s domination number of the middle graph of some standard graphs such as path and cycle graphs, and we propose some bounds on this new parameter.

Suggested Citation

  • K. Suriya Prabha & S. Amutha & N. Anbazhagan & Ismail Naci Cangul & Ghulam Shabbir, 2021. "Bounds on Co-Independent Liar’s Domination in Graphs," Journal of Mathematics, Hindawi, vol. 2021, pages 1-6, March.
  • Handle: RePEc:hin:jjmath:5544559
    DOI: 10.1155/2021/5544559
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/5544559.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/5544559.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5544559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:5544559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.