Author
Listed:
- Awad A. Bakery
- Wael Zakaria
- OM Kalthum S. K. Mohamed
- Ghulam Mustafa
Abstract
The generalized Gamma model has been applied in a variety of research fields, including reliability engineering and lifetime analysis. Indeed, we know that, from the above, it is unbounded. Data have a bounded service area in a variety of applications. A new five-parameter bounded generalized Gamma model, the bounded Weibull model with four parameters, the bounded Gamma model with four parameters, the bounded generalized Gaussian model with three parameters, the bounded exponential model with three parameters, and the bounded Rayleigh model with two parameters, is presented in this paper as a special case. This approach to the problem, which utilizes a bounded support area, allows for a great deal of versatility in fitting various shapes of observed data. Numerous properties of the proposed distribution have been deduced, including explicit expressions for the moments, quantiles, mode, moment generating function, mean variance, mean residual lifespan, and entropies, skewness, kurtosis, hazard function, survival function, r th order statistic, and median distributions. The delivery has hazard frequencies that are monotonically increasing or declining, bathtub-shaped, or upside-down bathtub-shaped. We use the Newton Raphson approach to approximate model parameters that increase the log-likelihood function and some of the parameters have a closed iterative structure. Six actual data sets and six simulated data sets were tested to demonstrate how the proposed model works in reality. We illustrate why the Model is more stable and less affected by sample size. Additionally, the suggested model for wavelet histogram fitting of images and sounds is very accurate.
Suggested Citation
Awad A. Bakery & Wael Zakaria & OM Kalthum S. K. Mohamed & Ghulam Mustafa, 2021.
"A New Double Truncated Generalized Gamma Model with Some Applications,"
Journal of Mathematics, Hindawi, vol. 2021, pages 1-27, August.
Handle:
RePEc:hin:jjmath:5500631
DOI: 10.1155/2021/5500631
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:5500631. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.