IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/4833683.html
   My bibliography  Save this article

Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices

Author

Listed:
  • Muhammad Awais
  • Zulfiqar Ahmed
  • Waseem Khalid
  • Ebenezer Bonyah
  • Tareq Al-shami

Abstract

Topological indices are numerical quantities associated with the molecular graph of a chemical structure. These indices are used to predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical compounds with irregular characteristics. The molecular graphs of zigzag benzenoid systems Zp and rhombic benzenoid systems Rp are inherently irregular. Therefore, applying the imbalance technique to these molecular structures plays an important role in predicting different properties. In this paper, we calculate sixteen irregularity indices for both Zp and Rp systems. By examining these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper understanding of the field.

Suggested Citation

  • Muhammad Awais & Zulfiqar Ahmed & Waseem Khalid & Ebenezer Bonyah & Tareq Al-shami, 2023. "Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices," Journal of Mathematics, Hindawi, vol. 2023, pages 1-12, May.
  • Handle: RePEc:hin:jjmath:4833683
    DOI: 10.1155/2023/4833683
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2023/4833683.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2023/4833683.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2023/4833683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:4833683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.