Author
Listed:
- Muhammad Akram
- Naveed Yaqoob
- Ghous Ali
- Wathek Chammam
- Tahir Mahmood
Abstract
An m-polar fuzzy set is a powerful mathematical model to analyze multipolar, multiattribute, and multi-index data. The m-polar fuzzy sets have appeared as a useful tool to portray uncertainty in multiattribute decision making. The purpose of this article is to analyze the aggregation operators under the m-polar fuzzy environment with the help of Dombi norm operations. In this article, we develop some averaging and geometric aggregation operators using Dombi t-norm and t-conorm to handle uncertainty in m-polar fuzzy (mF, henceforth) information, which are mF Dombi weighted averaging (mFDWA) operator, mF Dombi ordered weighted averaging (mFDOWA) operator, mF Dombi hybrid averaging (mFDHA) operator, mF Dombi weighted geometric (mFDWG) operator, mF Dombi weighted ordered geometric operator, and mF Dombi hybrid geometric (mFDHG) operator. We investigate properties, namely, idempotency, monotonicity, and boundedness, for the proposed operators. Moreover, we give an algorithm to solve multicriteria decision-making issues which involve mF information with mFDWA and mFDWG operators. To prove the validity and feasibility of the proposed model, we solve two numerical examples with our proposed models and give comparison with mF-ELECTRE-I approach (Akram et al. 2019) and mF Hamacher aggregation operators (Waseem et al. 2019). Finally, we check the effectiveness of the developed operators by a validity test.
Suggested Citation
Muhammad Akram & Naveed Yaqoob & Ghous Ali & Wathek Chammam & Tahir Mahmood, 2020.
"Extensions of Dombi Aggregation Operators for Decision Making under m-Polar Fuzzy Information,"
Journal of Mathematics, Hindawi, vol. 2020, pages 1-20, August.
Handle:
RePEc:hin:jjmath:4739567
DOI: 10.1155/2020/4739567
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:4739567. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.