IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/4281415.html
   My bibliography  Save this article

High-Performance Computational Early Warning Analysis of Agricultural Economy Relying on Binary Fuzzy Cluster Analysis Algorithm

Author

Listed:
  • Fang Tang
  • Miaochao Chen

Abstract

In this paper, a binary fuzzy cluster analysis algorithm is used for an in-depth study and analysis of high-performance computational early warning in the agricultural economy. The definition of interval type-two fuzzy set and its operation are summarized. Considering the uncertain information that will be encountered in the evaluation process, this paper constructs the evaluation model of rural informatization construction performance based on interval type-two fuzzy numbers, which improves the accuracy of the evaluation results. The fuzzy clustering centres are modified according to the nature of the fuzzy clustering centre matrix, and the optimal fuzzy clustering centres and optimal fuzzy clustering division matrix with consistent order are solved. Using the level eigenvalues to find out in the abundant water period, there are 4 monitoring sections of water quality evaluation results for still clean and 5 monitoring sections of water quality evaluation results for slight pollution. In the flat-water period, there are 2 monitoring sections of the water quality evaluation results that are still clean and 7 monitoring sections of the water quality evaluation results are slightly polluted. In the dry water period, the water quality evaluation results of the 9 monitoring sections are slightly polluted. The results and the use of integrated pollutant index evaluation method results are consistent, indicating that the use of fuzzy clustering model for water quality evaluation is practical and effective. Its functional structure includes management business, innovation business, service business, production business, and operation business functions, in addition to the design of the collection and storage scheme based on Hadoop data warehouse, to achieve accurate matching of information of science and technology agricultural services in the whole agricultural industry chain. Finally, the implementation and maintenance of the cloud-based science and technology agricultural service information system are deployed, and the operational effects of its information system-related functions are demonstrated using prototype design. This paper constructs a comprehensive information system for science and technology agricultural services based on cloud technology that integrates management, innovation, service, production, and operation, which meets not only the needs of traditional science and technology agricultural service information systems, such as expert consultation and training demonstration, but also other needs spawned by the development of agricultural modernization.

Suggested Citation

  • Fang Tang & Miaochao Chen, 2021. "High-Performance Computational Early Warning Analysis of Agricultural Economy Relying on Binary Fuzzy Cluster Analysis Algorithm," Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, November.
  • Handle: RePEc:hin:jjmath:4281415
    DOI: 10.1155/2021/4281415
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/4281415.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/4281415.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/4281415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:4281415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.