Author
Listed:
- Chunrong Zhou
- Zhenghong Jiang
- Kuppusamy Sathishkumar
Abstract
Convolutional neural networks (CNNs) are often used in tasks involving vision processing, and unclear images can hinder the performance of convolutional neural networks and increase its computational time. Furthermore, artificial intelligence (AI) and machine learning (ML) are related technologies, which are considered a branch of computer science, which are used to simulate and enhance human intelligence. In e-healthcare, AI and ML can be used to optimize the workflow, automatically process large amounts of medical data, and provide effective medical decision support. In this paper, the authors take several mainstream artificial intelligence models currently open on the market for reference. In this paper, the optimized model (AL-CNN) is tested for noise image recognition, and the AL-CNN model is established by using activation functions, matrix operations, and feature recognition methods, and the noisy images are processed after custom configuration. Not only does this model require no prior preparation when processing images, but it also improves the accuracy of dealing with noise in convolutional neural networks. In the AL-CNN in this paper, the architecture of the convolutional neural network includes a noise layer and a layer that can be automatically resized. After the comparison of the recognition experiments, the accuracy rate of AL-CNN is 20% higher than that of MatConvNet-moderate, and the accuracy rate is 40% higher than that of MatConvNet-chronic. In the second set of experiments, the accuracy exceeds MXNet and TensorFlow by 50% and 70%, respectively. In addition, the authors optimized the convolutional layer, pooling layer, and loss function of AL-CNN in different parameters, which improved the stability of noise processing, respectively. After customizing the two configuration optimizations, the authors found that the second optimized AL-CNN has higher recognition accuracy, and after the optimization test, the error rate can be continuously decreased as the number of recognition increases in a very short number of times.
Suggested Citation
Chunrong Zhou & Zhenghong Jiang & Kuppusamy Sathishkumar, 2023.
"Establishment and Test Effect of Artificial Intelligence Optimization Model Based on Convolutional Neural Network,"
Journal of Mathematics, Hindawi, vol. 2023, pages 1-12, May.
Handle:
RePEc:hin:jjmath:4216012
DOI: 10.1155/2023/4216012
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:4216012. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.