IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/3870657.html
   My bibliography  Save this article

Deep Learning-Based Economic Forecasting for the New Energy Vehicle Industry

Author

Listed:
  • Bowen Cai
  • Naeem Jan

Abstract

Recently the issues of insufficient energy and serious air pollution around the world have been rising. Henceforth, there is a need to carry out a research of new energy. Soon, new energy vehicles will be the mainstream trend, which can not only reduce the burden of consumers due to rising fuel prices but also solve the air pollution problem caused by the exhaust emissions of fuel vehicles. With the rapid development of science and technology, deep learning continues to make breakthroughs, and, in the field of economy with huge information data, we have more powerful weapons available to predict and research important economic data with infinite value, which can not only provide reference information to policy makers but also help enterprises and even economic markets to develop more healthily and sustainably. Therefore, this article uses deep learning algorithms to forecast and analyze the new energy industry, starting from the financial information released by new energy vehicle companies in their annual reports, in order to make basic judgments and help policy makers and enterprises in the new energy vehicle industry.

Suggested Citation

  • Bowen Cai & Naeem Jan, 2021. "Deep Learning-Based Economic Forecasting for the New Energy Vehicle Industry," Journal of Mathematics, Hindawi, vol. 2021, pages 1-10, December.
  • Handle: RePEc:hin:jjmath:3870657
    DOI: 10.1155/2021/3870657
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/3870657.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/3870657.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/3870657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumin Yu & Xiaoting Zhang & Zhijiao Du & Yanyan Chen, 2023. "A New Multi-Attribute Decision Making Method for Overvalued Star Ratings Adjustment and Its Application in New Energy Vehicle Selection," Mathematics, MDPI, vol. 11(9), pages 1-32, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:3870657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.