IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/3792164.html
   My bibliography  Save this article

Free Vibration of Composite Cylindrical Shells Based on Third-Order Shear Deformation Theory

Author

Listed:
  • Muneerah Saad AL Nuwairan
  • Saira Javed
  • Kenan Yildirim

Abstract

The focus of this study is to analyse the free vibration of cylindrical shells under third-order shear deformation theory (TSDT). The constitutive equations of the cylindrical shells are obtained using third-order shear deformation theory (TSDT). The surface and traverse displacements are expected to have cubic and quadratic variation. Spline approximation is used to approximate the displacements and transverse rotations. The resulting generalized eigenvalue problem is solved for the frequency parameter to get as many eigenfrequencies as required starting from the least. From the eigenvectors, the spline coefficients are computed from which the mode shapes are constructed. The frequency of cylindrical shells is analysed by varying circumferential node number, length dimension, layer number, and different materials. The authenticity of the present formulation is established by comparing with the available FEM results.

Suggested Citation

  • Muneerah Saad AL Nuwairan & Saira Javed & Kenan Yildirim, 2021. "Free Vibration of Composite Cylindrical Shells Based on Third-Order Shear Deformation Theory," Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, December.
  • Handle: RePEc:hin:jjmath:3792164
    DOI: 10.1155/2021/3792164
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/3792164.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/3792164.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/3792164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:3792164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.