Author
Listed:
- Aydın Karakoca
- Niansheng Tang
Abstract
The usage of the ridge estimators is very common in presence of multicollinearity in multiple linear regression models. The ridge estimators are used as an alternative to ordinary least squares in case of multicollinearity as they have lower mean square error. Choosing the optimal value of the biasing parameter k is vital in ridge regression in terms of bias-variance trade off. Since the theoretical comparisons among the ridge estimators are not possible, it is general practice to carry out a Monte Carlo study to compare them. When the Monte Carlo designs on the existing ridge estimators are examined, it is seen that the performances of the ridge estimators are only considered for the same level of relationship between the independent variables. However, it is more likely to encounter different levels of relationships between the independent variables in real data sets. In this study, a new type iterative ridge estimator is proposed based on a modified form of the estimated mean square error function. Furthermore, a novel search algorithm is provided to achieve the estimations. The performance of the proposed estimator is compared with that of the ordinary least squares estimator and existing 18 ridge estimators through an extensive Monte Carlo design. In the design of the Monte Carlo, both data generation techniques were taken into account, based on the constant and varying correlation levels between the independent variables. Two illustrative real data examples are presented. The proposed estimator outperforms the existing estimators in the sense of the mean squared error for both data generating types. Moreover, it is also superior with respect to the k-fold cross-validation method in the real data examples.
Suggested Citation
Aydın Karakoca & Niansheng Tang, 2022.
"A New Type Iterative Ridge Estimator: Applications and Performance Evaluations,"
Journal of Mathematics, Hindawi, vol. 2022, pages 1-12, May.
Handle:
RePEc:hin:jjmath:3781655
DOI: 10.1155/2022/3781655
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:3781655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.