Author
Listed:
- Xiangli Chang
- Hailang Cui
- Miaochao Chen
Abstract
With the increasing popularity of a large number of Internet-based services and a large number of services hosted on cloud platforms, a more powerful back-end storage system is needed to support these services. At present, it is very difficult or impossible to implement a distributed storage to meet all the above assumptions. Therefore, the focus of research is to limit different characteristics to design different distributed storage solutions to meet different usage scenarios. Economic big data should have the basic requirements of high storage efficiency and fast retrieval speed. The large number of small files and the diversity of file types make the storage and retrieval of economic big data face severe challenges. This paper is oriented to the application requirements of cross-modal analysis of economic big data. According to the source and characteristics of economic big data, the data types are analyzed and the database storage architecture and data storage structure of economic big data are designed. Taking into account the spatial, temporal, and semantic characteristics of economic big data, this paper proposes a unified coding method based on the spatiotemporal data multilevel division strategy combined with Geohash and Hilbert and spatiotemporal semantic constraints. A prototype system was constructed based on Mongo DB, and the performance of the multilevel partition algorithm proposed in this paper was verified by the prototype system based on the realization of data storage management functions. The Wiener distributed memory based on the principle of Wiener filter is used to store the workload of each workload distributed storage window in a distributed manner. For distributed storage workloads, this article adopts specific types of workloads. According to its periodicity, the workload is divided into distributed storage windows of specific duration. At the beginning of each distributed storage window, distributed storage is distributed to the next distributed storage window. Experiments and tests have verified the distributed storage strategy proposed in this article, which proves that the Wiener distributed storage solution can save platform resources and configuration costs while ensuring Service Level Agreement (SLA).
Suggested Citation
Xiangli Chang & Hailang Cui & Miaochao Chen, 2021.
"Distributed Storage Strategy and Visual Analysis for Economic Big Data,"
Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, November.
Handle:
RePEc:hin:jjmath:3224190
DOI: 10.1155/2021/3224190
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:3224190. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.