Author
Listed:
- Rehan Ahmad Khan Sherwani
- Sadia Iqbal
- Shumaila Abbas
- Muhammad Aslam
- Ali Hussein AL-Marshadi
- Ewa Rak
Abstract
Many problems in real life exist that are full of confusion, vagueness, and ambiguity. The quantification of such issues in a scientific way is the need of time. The negative binomial distribution is an important discrete probability distribution from the account of classical probability distribution theory. The distribution was used to study the chance of kth success in n trials before n − 1 failures for crisp data. The literature lacks in dealing with the situations for interval-valued data under negative binomial distribution. In this research, the neutrosophic negative binomial distribution is proposed to generalize the classical negative binomial distribution. The generalized proposed distribution considers the indeterminacy and crisp form from interval-valued. Several properties of the proposed distribution, such as moment generating function, characteristic function, and probability generating function, are also derived. Furthermore, the derivation of reliability analysis properties such as survival, hazard rate, reversed hazard rate, cumulative hazard rate, mills ratio, and odds ratio are also presented. In addition, order statistics for the proposed distribution, including wth, joint, median, minimum, and maximum order statistics are part of the paper. The proposed distribution is discussed from the real data applications perspective by considering the different case studies. This research opens the way to deal with the problems that follow conventional conveyances and include nonprecisely determined details simultaneously.
Suggested Citation
Rehan Ahmad Khan Sherwani & Sadia Iqbal & Shumaila Abbas & Muhammad Aslam & Ali Hussein AL-Marshadi & Ewa Rak, 2021.
"A New Neutrosophic Negative Binomial Distribution: Properties and Applications,"
Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, November.
Handle:
RePEc:hin:jjmath:2788265
DOI: 10.1155/2021/2788265
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:2788265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.