IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/2626249.html
   My bibliography  Save this article

Degenerate r-Bell Polynomials Arising from Degenerate Normal Ordering

Author

Listed:
  • Taekyun Kim
  • Dae San Kim
  • Hye Kyung Kim
  • Serkan Araci

Abstract

Recently, Kim-Kim introduced the degenerate r-Bell polynomials and investigated some results which are derived from umbral calculus. The aim of this paper is to study some properties of the degenerate r-Bell polynomials and numbers via boson operators. In particular, we obtain two expressions for the generating function of the degenerate r-Bell polynomials in z2, and a recurrence relation and Dobinski-like formula for the degenerate r-Bell numbers. These are derived from the degenerate normal ordering of a degenerate integral power of the number operator in terms of boson operators where the degenerate r-Stirling numbers of the second kind appear as the coefficients.

Suggested Citation

  • Taekyun Kim & Dae San Kim & Hye Kyung Kim & Serkan Araci, 2022. "Degenerate r-Bell Polynomials Arising from Degenerate Normal Ordering," Journal of Mathematics, Hindawi, vol. 2022, pages 1-6, October.
  • Handle: RePEc:hin:jjmath:2626249
    DOI: 10.1155/2022/2626249
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2022/2626249.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2022/2626249.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/2626249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:2626249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.