IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/2112167.html
   My bibliography  Save this article

Approximate Biprojectivity of â„“1-Munn Banach Algebras

Author

Listed:
  • G. Zarei
  • A. Pourabbas
  • M. Rostami
  • A. Sahami
  • Mohammad Alomari

Abstract

In the present paper, we study the approximate biprojectivity and weak approximate biprojectivity of â„“1-Munn Banach algebras when the related sandwich matrix is regular over InvA. In fact, we show that a â„“1-Munn Banach algebra with the regular sandwich matrix over InvA is approximately biprojective (weak approximately biprojective) if and only if A is approximately biprojective (weak approximately biprojective), respectively. We also study approximate biprojectivity of upper triangular Banach algebra when the associated sandwich matrix with elements in InvA is invertible. Finally, we apply our results to Rees semigroup algebras.

Suggested Citation

  • G. Zarei & A. Pourabbas & M. Rostami & A. Sahami & Mohammad Alomari, 2022. "Approximate Biprojectivity of â„“1-Munn Banach Algebras," Journal of Mathematics, Hindawi, vol. 2022, pages 1-9, November.
  • Handle: RePEc:hin:jjmath:2112167
    DOI: 10.1155/2022/2112167
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2022/2112167.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2022/2112167.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/2112167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:2112167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.