IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/1980480.html
   My bibliography  Save this article

Inverted Length-Biased Exponential Model: Statistical Inference and Modeling

Author

Listed:
  • Waleed Almutiry
  • naeem jan

Abstract

This research article proposes a new probability distribution, referred to as the inverted length-biased exponential distribution. The hazard rate function (HZRF) and density function (PDF) in the new distribution allow additional flexibility as well as some desired features. It provides a more flexible approach that may be used to represent many forms of real-world data. The quantile function (QuF), moments (MOs), moment generating function (MOGF), mean residual lifespan (MRLS), mean inactivity time (MINT), and probability weighted moments (PRWMOs) are among the mathematical and statistical features of the inverted length-biased exponential distribution. In the case of complete and type II censored samples (TIICS), the maximum likelihood (MLL) strategy can be used to estimate the model parameters. An asymptotic confidence interval (COI) of parameter is constructed at two confidence levels. We perform simulation study to examine the accuracy of estimates depending upon some statistical measures. Simulation results show that there is great agreement between theoretical and empirical studies. We demonstrate the new model’s relevance and adaptability by modeling three lifespan datasets. The proposed model is a better fit than the half logistic inverse Rayleigh (HLOIR), type II Topp–Leone inverse Rayleigh (TIITOLIR), and transmuted inverse Rayleigh (TRIR) distributions. We anticipate that the expanded distribution will attract a broader range of applications in a variety of fields of research.

Suggested Citation

  • Waleed Almutiry & naeem jan, 2021. "Inverted Length-Biased Exponential Model: Statistical Inference and Modeling," Journal of Mathematics, Hindawi, vol. 2021, pages 1-8, October.
  • Handle: RePEc:hin:jjmath:1980480
    DOI: 10.1155/2021/1980480
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/1980480.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/1980480.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1980480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:1980480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.