IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/1626457.html
   My bibliography  Save this article

A Multiobjective Particle Swarm Optimization Algorithm Based on Grid Technique and Multistrategy

Author

Listed:
  • Kangge Zou
  • Yanmin Liu
  • Shihua Wang
  • Nana Li
  • Yaowei Wu
  • Nan-Jing Huang

Abstract

When faced with complex optimization problems with multiple objectives and multiple variables, many multiobjective particle swarm algorithms are prone to premature convergence. To enhance the convergence and diversity of the multiobjective particle swarm algorithm, a multiobjective particle swarm optimization algorithm based on the grid technique and multistrategy (GTMSMOPSO) is proposed. The algorithm randomly uses one of two different evaluation index strategies (convergence evaluation index and distribution evaluation index) combined with the grid technique to enhance the diversity and convergence of the population and improve the probability of particles flying to the real Pareto front. A combination of grid technology and a mixed evaluation index strategy is used to maintain the external archive to avoid removing particles with better convergence based only on particle density, which leads to population degradation and affects the particle exploitation ability. At the same time, a variation operation is proposed to avoid rapid degradation of the population, which enhances the particle search capability. The simulation results show that the proposed algorithm has better convergence and distribution than CMOPSO, NSGAII, MOEAD, MOPSOCD, and NMPSO.

Suggested Citation

  • Kangge Zou & Yanmin Liu & Shihua Wang & Nana Li & Yaowei Wu & Nan-Jing Huang, 2021. "A Multiobjective Particle Swarm Optimization Algorithm Based on Grid Technique and Multistrategy," Journal of Mathematics, Hindawi, vol. 2021, pages 1-17, December.
  • Handle: RePEc:hin:jjmath:1626457
    DOI: 10.1155/2021/1626457
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/1626457.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/1626457.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1626457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Li & Daniel C. Coster, 2022. "Improved Particle Swarm Optimization Algorithms for Optimal Designs with Various Decision Criteria," Mathematics, MDPI, vol. 10(13), pages 1-16, July.
    2. Xing, Zongyi & Zhu, Junlin & Zhang, Zhenyu & Qin, Yong & Jia, Limin, 2022. "Energy consumption optimization of tramway operation based on improved PSO algorithm," Energy, Elsevier, vol. 258(C).
    3. Manuel Jaramillo & Diego CarriĆ³n, 2022. "An Adaptive Strategy for Medium-Term Electricity Consumption Forecasting for Highly Unpredictable Scenarios: Case Study Quito, Ecuador during the Two First Years of COVID-19," Energies, MDPI, vol. 15(22), pages 1-19, November.
    4. Zhaoyan Zhang & Shaoke Wang & Peiguang Wang & Ping Jiang & Hang Zhou, 2022. "Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN," Energies, MDPI, vol. 15(23), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:1626457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.