IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/1519019.html
   My bibliography  Save this article

Nonlinear ARIMA Models with Feedback SVR in Financial Market Forecasting

Author

Listed:
  • Shiwei Su
  • Miaochao Chen

Abstract

In recent years, as global financial markets have become increasingly connected, the degree of correlation between financial assets has become closer, and technological advances have made the transmission of information faster and faster, and information networks have integrated capital markets into one, making it easier for single financial market risk problems to form systemic risk through a high degree of market linkage effects. Based on the characteristics of financial markets containing both linear and nonlinear components, this paper chooses to use Autoregressive Integrated Moving Average (ARIMA) model and feedback Support Vector Regression (SVR) models to effectively integrate the ARIMA model and the SVR model, taking into account their respective linear and nonlinear characteristics. The paper chooses to use the (Autoregressive Integrated Moving Average (ARIMA) model and feedback Support Vector Regression (SVR) models to effectively integrate the strengths of the ARIMA and SVR models in terms of linearity and nonlinearity to perform forecasting analysis of financial markets. One of the important functions of forecasting is to transform future uncertainty into measurable risk, so that we can base our plans and actions on it. In this paper, the combined ARIMA-SVR model is compared with the single ARIMA model and SVR model in terms of the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE), where MAE and RMSE measure the absolute error between the predicted and true values, and MAPE measures the relative error between the predicted and true values. and the relative error between the true value. The results show that the combined ARIMA-SVR model has a better forecasting effect and higher forecasting accuracy than the single ARIMA model and SVR model, and the SVR model has higher forecasting accuracy than the ARIMA model in forecasting financial markets.

Suggested Citation

  • Shiwei Su & Miaochao Chen, 2021. "Nonlinear ARIMA Models with Feedback SVR in Financial Market Forecasting," Journal of Mathematics, Hindawi, vol. 2021, pages 1-11, November.
  • Handle: RePEc:hin:jjmath:1519019
    DOI: 10.1155/2021/1519019
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/1519019.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/1519019.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1519019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaihua Shen & Yanxuan Du & Zhengjie Xu & Xiaoqiang Qin & Jian Chen, 2023. "Temperature Prediction Based on STOA-SVR Rolling Adaptive Optimization Model," Sustainability, MDPI, vol. 15(14), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:1519019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.