Author
Abstract
This paper provides an in-depth analysis machine study of the relationship between stock prices and indices through machine learning algorithms. Stock prices are difficult to predict by a single financial formula because there are too many factors that can affect stock prices. With the development of computer science, the author now uses many computer science techniques to make more accurate predictions of stock prices. In this project, the author uses machine learning in R Studio to predict the prices of 35 stocks traded on the New York Stock Exchange and to study the interaction between the prices of four indices in different countries. Further, it is proposed to find the link between stocks and indices in different countries and then use the predictions to optimize the portfolio of these stocks. To complete this project, the author used Linear Regression, LASSO, Regression Trees, Bagging, Random Forest, and Boosted Trees to perform the analysis. The experimental results show that the MRDL deep multiple regression model proposed in this paper predicts the closing price trend of stocks with a mean square error interval [0.0043, 0.0821]. Additionally, 80% of the proposed DMISV, KDJSV, MACDV, and DKB stock buying and selling strategies have a return greater than 10%. The experimental results validate the effectiveness of the proposed buying and selling strategies and stock price trend prediction methods in this paper. Compared with other algorithms, the accuracy of the algorithm in this study is increased by 15%, and the efficiency of prediction is increased by 25%.
Suggested Citation
Mengya Cao & Naeem Jan, 2021.
"Predicting the Link between Stock Prices and Indices with Machine Learning in R Programming Language,"
Journal of Mathematics, Hindawi, vol. 2021, pages 1-10, December.
Handle:
RePEc:hin:jjmath:1275637
DOI: 10.1155/2021/1275637
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:1275637. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.