IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/1116671.html
   My bibliography  Save this article

Dynamic System Analysis of Investment in Both Production and R&D with Time Delay

Author

Listed:
  • Debao Gao
  • G Muhiuddin

Abstract

This paper, according to the process of capital return, establishes a differential dynamics model of investment with two time delays. When both time delays are zero, it is proved that the model is positively invariant, uniformly bounded, and globally asymptotically stable by using the comparison principle and Bendixson–Dulac theorem. When at least one time delay is not zero, according to Hopf bifurcation theorem, the conditions of local asymptotic stability and existence of periodic solution of investment model are obtained. By using the normal form theory and the center manifold theory, the discriminant formula of periodic solution property of investment model is given. Under the condition of controlled time delay, the model is numerically simulated to verify the correctness of relevant analytical conclusions. Therefore, the investment model describes the dynamic process and development trend of project investment quite closely.

Suggested Citation

  • Debao Gao & G Muhiuddin, 2022. "Dynamic System Analysis of Investment in Both Production and R&D with Time Delay," Journal of Mathematics, Hindawi, vol. 2022, pages 1-12, April.
  • Handle: RePEc:hin:jjmath:1116671
    DOI: 10.1155/2022/1116671
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2022/1116671.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2022/1116671.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/1116671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:1116671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.