Author
Listed:
- Nictor Mwamba
- Jeconia Okelo Abonyo
- Kennedy Otieno Awuor
- Saranya Shekar
Abstract
The aim of this research is to study the effects of thermal radiation and chemical reaction on hydromagnetic fluid flow in a cylindrical collapsible tube with an obstacle. The fluid flow is governed by continuity, momentum, energy, and concentration equations. Similarity transformation has been used to convert the obtained PDEs into ODEs. The collocation method has been used to numerically solve the ODEs. The method has been implemented in MATLAB using the bvp4c inbuilt function. The effects of the nondimensional parameters on velocity, temperature, and concentration have been presented graphically. Additionally, the skin-friction coefficient, the Nusselt number, and the Sherwood number have been discussed and are presented in a tabular form. The findings demonstrated that increasing the Reynolds number causes a rise in the fluid temperature and velocity. The fluid velocity decreases as the Hartmann number and the weight of the obstacle increase but increases with increasing Grashof numbers. The temperature of the fluid increases as the radiation parameter, or Eckert number, increases, but decreases as the Prandtl number increases. As the Soret number rises, so do the fluid’s temperature and concentration distribution. With an increase in the unsteadiness parameter, the fluid velocity and the concentration distribution decrease, whereas the opposite is seen in temperature. As the Schmidt number, the concentration Grashof number, and the chemical reaction parameter increase, the fluid’s concentration decreases. There is an increase in skin-friction coefficient with increasing Prandtl number, Eckert number, Soret number, thermal Grashof number, concentration Grashof number, thermal radiation parameter, Hartmann number, and unsteadiness parameter, while a decrease is observed with increasing Reynolds number. The Nusselt number increases with an increase in the Prandtl number, Eckert number, thermal radiation parameter, Hartmann number, and unsteadiness parameter. A slight decrease in the Nusselt number has been observed with increasing thermal Grashof number. The Sherwood number decreases with increasing Prandtl number, chemical reaction parameter, and thermal radiation parameter but increases with increasing Schmidt number, Eckert number, and Soret number. The research has the potential for a wide range of applications including but not limited to the medical field and other physical sciences.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:9991376. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.