IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/840479.html
   My bibliography  Save this article

Asymptotic and numerical solutions for diffusion models for compounded risk reserves with dividend payments

Author

Listed:
  • S. Shao
  • C. L. Chang

Abstract

We study a family of diffusion models for compounded risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. We are interested in the models in which the dividend payments are paid from the risk reserves. After defining the process of conditional probability in finite time, martingale theory turns the nonlinear stochastic differential equation to a special class of boundary value problems defined by a parabolic equation with a nonsmooth coefficient of the convection term. Based on the behavior of the total income flow, asymptotic and numerical methods are used to solve the special class of diffusion equations which govern the conditional ruin probability over finite time.

Suggested Citation

  • S. Shao & C. L. Chang, 2004. "Asymptotic and numerical solutions for diffusion models for compounded risk reserves with dividend payments," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2004, pages 1-19, January.
  • Handle: RePEc:hin:jijmms:840479
    DOI: 10.1155/S016117120430431X
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2004/840479.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2004/840479.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S016117120430431X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:840479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.